Evidence-Based Supplementation for Endurance Performance

Primary concerns when considering supplementation to ENHANCE performance:

- 1. Adequate diet should be the primary goal for every endurance athlete before considering supplementation for performance
 - a. Goal is to consume both adequate macronutrients (carbohydrates, fats, protein) AND micronutrients (vitamins, minerals, trace minerals, etc.)
 - b. Sometimes supplements here are needed to ensure adequate micronutrient intakes (e.g., daily multivitamin, iron, magnesium and other electrolytes, etc.)
- 2. Adequate daily hydration around training/racing should also be a goal for endurance athletes before considering supplementation for performance
 - a. This includes drinking sufficient water to maintain adequate hydration throughout the day and throughout training/racing
- 3. Proper fueling during training/racing should be the next most important goal for endurance athletes before considering supplementation for performance
 - a. This includes adequate fluid, electrolyte, and carbohydrate intake to fuel optimal performance during training/racing; see previous <u>VO₂</u>

 <u>Max Podcast Episode 22</u> for a more detailed discussion on this topic

Dietary Supplements with Evidence to Support their Effectiveness for Endurance Athletes*

Supplement	Use/Mechanism	Dosage	Frequency/Timing
Caffeine	Improved endurance and repeated-sprint performance via an	2-9 mg/kg	30-90 min prior to exercise
	↑ central nervous system stimulation and ↓ RPE	(2-3 mg/kg is sufficient)	
Beta-Alanine	Non-essential amino acid that is a precursor to carnosine; \(\)	1.6-6.4g/day	>4 weeks; carnosine levels will
	concentration of intramuscular carnosine, which leads to		decline to baseline within 10-15
	greater buffer capacity during exercise		weeks of ceasing
			supplementation
Nitrates/Nitrites	Reduced submaximal exercise oxygen cost, reduced systolic	5-9 mmol/day (or 0.5L/day of	1-15 days (may be acute effects
	and diastolic BP, and improved endurance performance due	beetroot juice) – <i>no clear</i>	on hemodynamics, but improved
	to increased nitric oxide production († mitochondrial	evidence on whether a dose-	performance may require
	efficiency, ↑ muscle oxygenation, ↑ Sarcoplasmic Reticulum	response relationship exists yet	multiple days of
	Ca ²⁺ handling)		supplementation); plasma
			nitrites will decline to baseline
			after 6-9 hours of
			supplementation
Sodium Bicarbonate	↑ total muscle buffer capacity during exercise from an ↑ in	0.2-0.4 g/kg	60-120 minutes before exercise
	sodium bicarbonate concentration in the bloodstream;		
	beneficial effects have only been documented through the		
	ingestion of sodium bicarbonate with little to no research		
	documenting the benefits of cream-based or topical		
	application of sodium bicarbonate		

^{*(}Bishop et al., 2010; Kreider et al., 2010; Jones et al., 2014; Sports Nutrition Conference, 2012; Thomas et al., 2016; Peart et al., 2012; Kern et al., 2018; Misell et al., 2018)